Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Neurosci ; 15: 757381, 2021.
Article in English | MEDLINE | ID: covidwho-1497108

ABSTRACT

Physiological responses of two interacting individuals contain a wealth of information about the dyad: for example, the degree of engagement or trust. However, nearly all studies on dyadic physiological responses have targeted group-level analysis: e.g., correlating physiology and engagement in a large sample. Conversely, this paper presents a study where physiological measurements are combined with machine learning algorithms to dynamically estimate the engagement of individual dyads. Sixteen dyads completed 15-min naturalistic conversations and self-reported their engagement on a visual analog scale every 60 s. Four physiological signals (electrocardiography, skin conductance, respiration, skin temperature) were recorded, and both individual physiological features (e.g., each participant's heart rate) and synchrony features (indicating degree of physiological similarity between two participants) were extracted. Multiple regression algorithms were used to estimate self-reported engagement based on physiological features using either leave-interval-out crossvalidation (training on 14 60-s intervals from a dyad and testing on the 15th interval from the same dyad) or leave-dyad-out crossvalidation (training on 15 dyads and testing on the 16th). In leave-interval-out crossvalidation, the regression algorithms achieved accuracy similar to a 'baseline' estimator that simply took the median engagement of the other 14 intervals. In leave-dyad-out crossvalidation, machine learning achieved a slightly higher accuracy than the baseline estimator and higher accuracy than an independent human observer. Secondary analyses showed that removing synchrony features and personality characteristics from the input dataset negatively impacted estimation accuracy and that engagement estimation error was correlated with personality traits. Results demonstrate the feasibility of dynamically estimating interpersonal engagement during naturalistic conversation using physiological measurements, which has potential applications in both conversation monitoring and conversation enhancement. However, as many of our estimation errors are difficult to contextualize, further work is needed to determine acceptable estimation accuracies.

2.
J Biomech ; 126: 110620, 2021 09 20.
Article in English | MEDLINE | ID: covidwho-1415534

ABSTRACT

Trunk exoskeletons are wearable devices that support humans during physically demanding tasks by reducing biomechanical loads on the back. While most trunk exoskeletons are rigid devices, more lightweight soft exoskeletons (exosuits) have recently been developed. One such exosuit is the HeroWear Apex, which achieved promising results in the developers' own work but has not been independently evaluated. This paper thus presents an evaluation of the Apex with 20 adult participants during multiple brief tasks: standing up from a stool with a symmetric or asymmetric load, lifting a unilateral or bilateral load from the floor to waist level, lifting the same bilateral load with a 90-degree turn to the right, lowering a bilateral load from waist level to floor, and walking while carrying a bilateral load. The tasks were performed in an ABA-style protocol: first with exosuit assistance disengaged, then with it engaged, then disengaged again. Four measurement types were taken: electromyography (of the erector spinae, rectus abdominis, and middle trapezius), trunk kinematics, self-report ratings, and heart rate. The exosuit decreased the erector spinae electromyogram by about 15% during object lifting and lowering tasks; furthermore, participants found the exosuit mildly to moderately helpful. No adverse effects on other muscles or during non-lifting tasks were noted, and a decrease in middle trapezius electromyogram was observed for one task. This confirms that the HeroWear Apex could reduce muscle demand and fatigue. The results may transfer to other exoskeletons with similar design principles, and may inform researchers working with other wearable devices.


Subject(s)
Exoskeleton Device , Lifting , Adult , Biomechanical Phenomena , Electromyography , Humans , Muscle, Skeletal , Walking
SELECTION OF CITATIONS
SEARCH DETAIL